Fourier Analysis Feb 24, 2022.
Review:
• We construct a cts function on the circle, say 9, such that

$$S_N g(0) \neq g(0)$$

Chop 4. Applications of Fourier series.
We are going to give the application of Fourier series in
geometry, number theory, analysis and PDE
\$4.1 Isoperimetric inequality.
Thm 1. Let Γ be a C^1 simple closed curve in the plane.
Let L denote the length of Γ , let A denote the
Area of the region bounded by Γ . Then
 $A \leq \frac{L^2}{4\pi}$.
Moreover "=" holds if and only if Γ is a Circle.

$$A = Area(\Omega)$$

$$A = Area(\Omega)$$

$$L = length (\Gamma)$$
Then $A \leq \frac{l^2}{4\pi}$.
$$Def. A parametrized curve in (R2 is a mapping)$$

$$Y: [a, b] \rightarrow |R^2$$
The image of Y , $\{Y(t): t \in [a, b]\}$, is called a
curve, clenoted by Γ .
$$Def. We say Y = Y(t), t \in [a, b], is C^1 if$$

$$t \mapsto Y(t) is C^1 on [a, b], Y(t) = (x(t), y(t)),$$

$$Y is C^1 \leq both x(t) and y(t) are C^1 on [a, b],$$
and $(x(t), y(t)) \neq (o, o) \text{ on } [a, b].$

Fact: The length of a C¹ parametrized curve
$$\gamma'$$

is given by
length (T) = $\int_{a}^{b} |\delta'(t)| dt$
where $|\delta'(t)| = \sqrt{\chi'(t)^{2} + \chi'(t)^{2}}$
for $\gamma'(t) = (\chi(t), g(t)), t \in [a, b]$
Def. A parametrized curve $\gamma': [a, l] \rightarrow R^{2}$ is
said to be parametrized by arclergth if
 $|\delta'(t)| = 1$ for $a \leq t \leq l$.
 $\chi(a) = \chi(b) = \chi(b)$
The length of the curve between $\chi(a)$ and $\chi(b)$
 $= \int_{0}^{b} |\delta'(t)| dt = \int_{0}^{b} 1 dt = 5$

It is not difficult to check that
any
$$c^{\perp}$$
 simple curve can be reparametrized by
arclength.
Lem 2. Let f, g be integrable on the circle.
Then $\langle f, g \rangle = \sum_{n=-\infty}^{\infty} \widehat{f}(n) \ \widehat{g}(n)$, (*)
where
 $\langle f, g \rangle = \frac{1}{2\pi} \int_{0}^{2\pi} \widehat{f}(n) \ \widehat{g}(n) dx$.
Pf. This result is a generization of the Parseval identity.
Indeed if $\widehat{f} = g$, then (*) becomes the Parseval identity.
To prove (*), let us use the following identity
 $\langle f, g \rangle = \frac{1}{4} \left(||f+g||^{2} - ||f-g||^{2} + i \left(||f+ig||^{2} - ||f-ig||^{2} \right) \right)$
which can be checked directly. Then by the Parseval identity
 $\langle f, g \rangle = \frac{1}{4} \left(\sum_{n=-\infty}^{\infty} ||\widehat{f}(n) + \widehat{g}(n)|^{2} - ||\widehat{f}(n) - \widehat{g}(n)|^{2} \right)$

$$= \sum_{n=-\infty}^{\infty} \widehat{f}(n) \overline{\widehat{g}(n)}.$$
Proof of the isopenimetric inequality:
By taking a possible transformation
 $(x, y) \rightarrow (sx, sy)$
if necessary, we may assume that
 $\mathcal{L}(\Gamma) = 2\pi$
Parametrize Γ by its arclength,
 $\gamma = \gamma(t): o \leq t \leq 2\pi$
such that
 $[\gamma'(t)] = \sqrt{\chi'(t)^2 + \gamma'(t)^2} = 1$ for $t \in [0, 2\pi]$

To estimate
$$A = Area(\Omega)$$
, let us use Green Thm:
Green Thm: For C^{1} functions $P(x,y)$ and $Q(x,y)$,
 $\oint_{\Gamma} P(x,y) dx + Q(x,y) dy = \iint_{\Omega} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dx dy$
In this theorem, taking $P(x,y) \equiv 0$ and $Q(x,y) = x$ gives
 $\oint_{\Gamma} x dy = \iint_{\Omega} 1 dx dy = Area(\Omega) = A$.
That is,
 $A = \oint_{\Gamma} x dy = \int_{0}^{2\pi} x(t) y'(t) dt$
Next we need to show that
 $A = \int_{0}^{2\pi} x(t) y'(t) dt \leq \frac{\ell^{2}}{4\pi} = \frac{(2\pi)^{2}}{4\pi} = \pi$.
Under the condition $x'(t)^{2} + y'(t)^{2} = 1$.